Mixed-Signal Testing & DfT Techniques

黃俊郎

國立臺灣大學 電機工程學系 電子工程學研究所

Outline

- Mixed-Signal Test Problems
- Mixed-Signal DfT Techniques
- IEEE Standard for a Mixed-Signal Test Bus
- DSP-Based Mixed-Signal Testing
- DSP-Based Mixed-Signal SoC Self-Testing

Mixed-Signal Test Problems

The Role of Testing

- The role of testing is to detect whether something went wrong.
- Diagnosis, on the other hand, tries to determine exactly what went wrong & where the process has to be altered.
- Test objectives
 - Design verification
 - Ensure product quality
 - Diagnosis & repair

What are we after?

- Design errors
- Fabrication errors (caused by human errors)
- Fabrication defects (caused by imperfect manufacturing process)
- Physical failures

Costs of Testing

- Design for testability (DFT)
 - Chip area overhead and yield reduction
 - Performance overhead
- Test development
 - Test generation and fault simulation
 - Test programming and debugging
- Manufacturing test
 - Automatic test equipment (ATE) capital cost
 - Test center operational cost

Components of an ATE

- Powerful computer
- Powerful 32-bit Digital Signal Processor (DSP) for analog testing
- Test Program
 - written in high-level language) running on the computer
- Probe Head
 - actually touches the bare or packaged chip to perform fault detection experiments
- Probe Card or Membrane Probe
 - contains electronics to measure signals on chip pin or pad

Automated Test Equipment Cost

- Tester cost = $b + \Sigma(m \times x)$
- Other cost factors
 - Tester depreciation
 - Tester maintenance cost
 - Test operation cost

Tester segments	Base cost	Cost per pin	Pin count
	K \$	\$	
High-performance ASIC/MPU	250 - 400	2,700 - 6,000	512
Mixed-Signal	250 - 350	3,000 - 18,000	128 - 192
DfT Tester	100 - 350	150 - 650	512 - 2500
Low-end µC / ASIC	200 - 350	1,200 - 2,500	256 - 1,024
Commodity Memory	200+	800 - 1,000	1,024
RF	200+	~50.000	32

b

 \mathbf{m}

 \boldsymbol{x}

[ITRS 2001]

Mixed-Signal System-on-Chip

 Analog/mixed-signal circuitries are essential in real-world systems.

Mixed-Signal vs. Digital Testing

	Digital	Analog
Test signal	Single type	Multiple types
Response analysis	Direct interpretation	Need mathematical post-processing
Measurement requirement	Low-precision	High-precision
Fault model	Mainly catastrophic	Both catastrophic and parametric
Fault-free response	Binary vectors	Tolerance range in multi-dim. space

Analog/Mixed-Signal Testing Problems

- Size not a problem.
- Much harder analog device modeling
 - No widely-accepted analog fault model.
 - Infinite signal range.
 - Tolerances depend on process and measurement error.
 - Tester (ATE) introduces measurement error.
 - Digital / analog substrate coupling noise.
 - Absolute component tolerances +/- 20%, relative +/- 0.1%.
 - Multiple analog fault model mandatory.
- No unique signal flow direction.

Current Status

- Specification-based (functional) tests
 - Tractable and does not need an analog fault model.
 - Long test time.
 - Expensive ATE.
 - Long test development time: application, setup dependent.
- Structural ATPG used for digital, just beginning to be used for analog (exists)
- Separate test for functionality and timing impossible.

The Challenges

- ATE cost problem
 - Pin inductance (expensive probing)
 - Multi-GHz frequencies
 - High pin count (1024)
- High-speed serial interfaces are gaining growing popularity.
 - High speed, differential, low voltage swing, large numbers of pin counts.
- Analog effects appear as digital clock speeds increase and reach fundamental limits.

Solutions?

- Employ DfT techniques to limit the functional test performance envelope in production by
 - Reducing I/O data rate requirements,
 - Enabling low pin count testing, and
 - Reducing the dependence on expensive instruments.

Structural testing methodoloty.

Mixed-Signal DfT Techniques

Fundamental Issue of Analog Measurement* - Precision

- Definition
 - Measurement sample deviation relative to measurement mean, e.g. standard deviation (σ_{MEAS}) of a set of measurements
- Sources of imprecision: various noise
- Basic technique to increase precision: integration
 - the more samples averaged, the better

Fundamental Issue of Analog Measurement* - Accuracy

- Definition
 - Measurement mean relative to true mean, e.g. average measurement error (μ_{MEAS} μ_0)
- Sources of inaccuracy: systematic errors
- Basic technique to increase accuracy: substraction
 - e.g. measure with/without stimulus, inverted/non-inverted

Reconfiguration Techniques

Bypass to gain accessibility of internal nodes

Loop around for back-to-back testing

A DfT Technique for SC Filters [Soma VTS'94]

• In mission mode:

- In test mode, bypass a filter stage by converting it to an allpass gain stage
 - Open grounding switches
 - Close signal path switches
 - $v_2 = -(C_1/C_2||C_4) v_1$
- Gated 2-phase clock signals

SW Opamp Design [Huertas VTS'96]

- SW opamp
 - With additional inputs: Test, VT
 - Test = 1: unit buffer
 - Test = 0: regular opamp
 - VT is connected to the output of previous stage
- In test mode
 - Test = 0 for stage under test
 - Test = 1 for others
- Switches are inserted on small signal path to reduce performance degradation

Oscillation BIST [Kaminska VTS'96]

- Analog CUT plus added circuitry become an oscillator in test mode
 - Oscillation induced through positive feedback
- Defects cause deviations in
 - Oscillation frequency
 - Oscillation amplitude
- Very sensitive to process variations
 - Causes yield loss

Analog Checksum [Chatterjee D&T'96]

Built-in Current Sensor

- Insert current sensor between CUT and Vdd (Vss)
- Use current signature to make pass/fail decision
- Compare to:
 - DC threshold (on-chip or off-chip)
 - Expected spectrum (off-chip)
- Cons: resistance in Vdd Path

Analog Output Response Compaction [Bertrand EDTC '97]

- Opamp-based integrator for analog signal compaction
- Suffer fault aliasing problem

Subband Filtering [Abraham ITC'99]

Pros

- Subband filtering requires relatively less hardware
- More immune from fault aliasing problems

Cons

Requires on-chip ADC

IEEE Standard for a Mixed-Signal Test Bus

Test Board with Mixed-Signal Parts

- The introduction of analog components to 1149.1 compliant chip introduces new problems.
- The ability to isolate faulty interconnects on the analog I/O pins does not exist!!

Scope of the Standard

Interconnect test

 Testing for opens and shorts among the interconnections in a PCA (Printed Circuit Assembly).

Parametric test

- Making analog characterization measurements.
- Testing for presence and value of discrete components in a PCA.

Internal test

- Testing the internal circuitry of the mixed-signal component itself regardless of whether it is part of a PCA.
- Not mandatory.

Feature Overview

Capabilities

- Continuous-time voltage, current access via two analog pins.
- Measure R, L, C, gain, etc. with < 1% error.
- True differential access, and other options.
- 1149.1 compliant
- The idea is to include a set of digitally-controllable analog boundary cells that can perform the following four functions:
 - Disconnect the I/O pin from the analog core.
 - Set the I/O pin at a logic high or low level.
 - Detect the logic level present on the I/O pin.
 - Connect the I/O pin to a two-wire analog test bus.

A Minimally Configured 1149.4-Conformant Component

Required Test Functions for Analog Pins

Isolation

- Connect to core.
- Disconnected from core (CD state).
- Perform tests equivalent to 1149.1
 - Drive pin's V_{max}, V_{min} (DC).
 - Compare V_{PIN} to pin's V_{TH} .
- Facilitate analog parametric tests
 - Deliver analog ground (V_G) via power rail.
 - Deliver current to pin via AT1 pin and AB1 bus.
 - Monitor pin's voltage via AB2 bus and AT2 pin.

Test Access Port (TAP) Pins

- TCK test clock
- TMS test mode select
- TDI test data in
 - Instruction or scan data
- TDO test data out
 - Test results or for next chip
- TRST optional reset

Analog TAP pins

- AT1 stimulus current bus
 - At least capable of conveying ±100 μA
 - May be any combination of AC and DC
 - DC 10 KHz minimum bandwidth
 - Sufficient for state-of-the-art ATE to achieve < 1% error
 - Convey response output (optional)
- AT2 resultant voltage bus
 - At least capable of conveying ±100 mV
 - Range: (V_{SS} 100 mV) to (V_{DD} + 100 mV)
 - Ensures that protection diodes are not partially activated.
 - Convey stimulus input (optional)
- AT1N, AT2N inverted pins for differential testing.

1149.4 Board-Level View

Test Register Architecture

ABM Switching Architecture

Possible Control Structure for ABM

TBIC Switching Architecture

TBIC - Sample Implementation of the

Virtual Probing

Extended Interconnect Measurement – Measurement One

Extended Interconnect Measurement – Measurement Two

Network Measurement

Connectivity of Residual Elements

Testing the Analog Core

DSP-Based Mixed-Signal Testing

Analog Test Setup

- Low test throughput.
- Less flexibility.

DSP-Based Analog Testing

- Flexible
 - single setup for multiple types of tests
- High throughput.
- Performance limited by ADC/DAC.

Test Waveform Synthesis

- Test signal
 - digitized sinusoid
 - digitized multi-tone
 - pseudo random

Output Response Digitization

- Response analysis:
 - FFT
 - IEEE 1057 sinewave fitting
 - cross-correlation / auto-correlation

DSP-based vs. analog ATE

- Increased test throughput
- Reduced switching & settling time
- Device response is memorized and analyzed for different parameters
- Software DSP doesn't have to be real-time
- Performance limited by ADC/DAC

DSP-Based Mixed-Signal SoC Self-Testing

New Opportunities

- Utilize on-chip DSP capabilities to facilitate mixed-signal testing.
 - Test the digital parts first.
- On-chip ATE!!

DSP-Based Self-Testing of Analog Components

- DSP-based BIST on-chip tester
 - Relieve the need of expensive ATE
 - Reduce external noise
- Practical issues
 - Test quality limited by DAC/ADC
 - DAC/ADC are not always available, and must be tested first

The Delta-Sigma Modulation

- High sampling rate (fs >> 2fo), low output amplitude resolution
 - Average output tracks input value
- Allows the use of relatively "imperfect" components
 - Suitable for VLSI implementation

MADBIST - Mixed Analog-Digital BIST

Testing ADC first!!

- Build a precision analog signal generator into the DAC:
 - high frequency, pulse density modulated single bit-stream using $\Sigma\Delta$ modulation technique
 - producing high-quality analog sinusoidal/multitone signal
- Could perform SNR, FR and IMD tests for ADC

Ref: Toner & Roberts, ITC93, VTS94

Multiple Test Phases.....

P0: Testing DSP

P1: Testing ADC

P2: Testing DAC

P3: Testing analog blocks

Delta-sigma Modulation Based Signal Generation [Roberts]

- 1+ bit in DAC → 6dB SNR gain
- How to measure the DAC output levels using on-chip resources?

Delta-Sigma Modulation Based BIST Architecture

Pesudo-Random Testing

- Digital white noise stimulus
- Testing multiple specs. in one test session
- Effective dynamic testing

Ref: Pan & Cheng, ICCAD95

Pseudo-Random Testing

Ref: Pan & Cheng, ICCAD95

Automatic Mapping of Tolerance Range

- Tools for automatic mapping of tolerance range from the given specs. to the observation space are needed
- Perfect mapping may not be possible
 - Objective: minimize misclassification

Conclusion

 Although expected to lag leading-edge device performance and complexity, DfT techniques are essential to reduce dependence on expensive ATE.

- Need more research into the area of structure testing.
 - No proven alternative to performance-based analog testing exists.